
FOX DOC

28 October 2007
Linux Day

Abstract

Goal of this document is try to incline who read to the Embedded
Linux world. The object of this article is the FOX Board because it is a
product complete by the point of view of hardware as much as software
and moreover it is a tools versatile, simply to use and completely free.

Mainly this article summarizes the experience about this board made
by the undersigned (and clearly by who wish extend the document). The
arguments can go from hardware to software user/kernel space.

Actually the focus is oriented on GPIO device by which it is possible to
control the LED (included LEDs of ethernet connector) and the button.

1 Introduction to the ETRAX 100LX

Before begining it is better to give some informations about the processor. This
informations are available by the datasheet and obviously they are more de-
tailed in there. Now it is enough to known the etrax 100lx is a RISC 32-
bit processor (100MIPS1) with 8kbyte of internal cache. Every peripherals are
memory-mapped and this imply that exists at least one particular physical mem-
ory address (named register) for each peripheral in which every bit set a speci�c
function or behavior of the considered device. This is very convenient because
allow to menage peripherals directly and in a simple manner without use par-
ticular instructions. Examples of processor no memory-mapped are those of x86
family.

Memory Total virtual addressing is 4Gb and the access to the external memory
is menaged by integrated controller on chip; this controller get the interface
to the memory SDRAM, EDO SRAM, EPROM, EEPROM and Flash
PROM without using external device or transceiver. There is also a MMU
unit.

I/O 2 synchronous and 4 asynchronous serial port, 2 parallel port IEEE1284
compliant, SCSI-2 and SCSI-3, IDE/ATA-2, 2 USB (both host and de-
vice!), Ethernet 10/100 fullduplex.

1 Mega Instruction Per Second

1

2 GPIO

GPIO indicates General Purpose Input/Output, that is a device of input or
output for general purposes. Those kind of devices called "port" are mainly two
indicated with A and B2 both composed by 8 bit. To this port correspond 8
pin on socket processor and their state and con�guration type are indicated by
others 8 bit in speci�c registers. These port are digital and is called tri-state
because operating on a particular 8-bit register (R_PORT_PA_DIR for A port), it
is possible to con�gure a single pin as an input (0) or output (1). If it is an
output, manipulating an other register (R_PORT_PA_SET for A port) will possible
set in high (1) or low (0) state every pin.

In �gure 1 is reported the connection schematic of some port on FOX board.
As we see there are three LED, one of these always on (green) to indicate power
is present, while the other two (yellow and red) are connected directly to the pin
3 (PA2) and 4 (PA3) of micro-processor. The button (switch SW1) is otherwise
connected to the port 2 (PA1).

Figura 1: Button and LED connections on fox board.
This image is taken from board schematics.

As you notice LEDs are connected in negate logic, so anode of diode is
connected (with a resistor) to +Vcc, while cathode is connected directly on
processor pin. So we can turn on the led by setting 0 (low logical state) to the
corresponding pin of port which LED is connected. Similarly the switch drive
down (low logic state) the pin PA1 when will be pressed, while on rest state
(open circuit) pin will set on high state. This choice is made because when
the diode is on, the current through in it and enter in the corresponding pin of
the microprocessor; but this pin is in low state, so the voltage between it and

2 There would be also a thirth port called G, but it is not mentioned in this article

2

ground is about 0V. Then the power dissipated from the pin of processor is

P = V · I ' 0

and for this reason it is possible to provide a current also near to the nominal
current for each pin3 and however the processor will be less hot. If the diodes
would connected in direct mode (alias direct logic) and if the current of the pin
of processor would be 12mA, the power dissipated would be

P = V · I = 5 · 12 · 10−3 = 60mW

Unfortunately this circuit has a problem: the button drive directly to the
ground the potential of the pin which it is connected. Now if the pin would be
con�gured as an output and its state would be set to high (+5V), when it will
be pressed a short-circuit happening. This normally cause a permanently break
down of the pin or whole processor. It would be a good thing connect a resistor
between switch and pin PA1.

2.1 Kernel con�guration

Default con�guration of port A and B is done at kernel level. Considering the
kernel 2.6 and moving in subdirectory os/linux-2.6/ we can execute the typical
command make menuconfig; if otherwise we prefer to control all from main di-
rectory (typically devboard-R2_01) we must type make kernelconfig. Any way
standard textual screen for kernel con�guration will appear.

To con�guring the "speci�c" device of this processor like GPIO port we must
move in section Hardware setup as we can see in �gure 2. It is possible to set
four value by which we can indicate how LED are connected to the port A or B;
but this last one have some shared peripherals and the other functionalities (like
SCSI or USB) are priority then genetic I/O function. With CSP0 (Cable Selected
Port) we can enable the special function of port B specifying if the functionality
of every pin (from 2 to 7) is "special" or not (simple I/O). Choosing one of
the �rst three option, other voice which allow to set to which pin LEDs are
connected will be appear.

The last function (None, showed in �gure 2) set only the option R_PORT_PA_DIR,
R_PORT_PA_DATA, R_PORT_PB_CONFIG, R_PORT_PB_DIR, R_PORT_PB_DATA indicated just
below. These options de�ne the exact value to put in the speci�c register; they
are present also in the three previous options, but they don't have e�ect in the
previous case if one of the �rst options is being choosen. Consider now the
port A4: by default is indicated R_PORT_PA_DIR=0x1D and R_PORT_PA_DATA=0xF0.
Examining the bit value, we see that 0x1D=0b00011101 e 0xF0=0b11110000 so the
port PA1 will be con�gured as input5, while PA0, PA2 (yellow LED), PA3 (red

3Nominal current for each pin is 12mA, but it is better the current would be the smaller as

possible by avoid processor over temperature. It is also better to know the maximum power

dissipable by the processor.
4 In Fox 8+32 considered now, LEDs are connected to the port A.
5As indicated, by default is indicated pin 2 as input to avoid problems mentioned in

paragraph 2.

3

LED) and PA4 are output. These last LED are all on because the �rst four bits
of R_PORT_PA_DATA are 0.

2.2 Device driver

The driver in exam is $AXIS_KERNEL_DIR/arch/cris/arch-v10/drivers/gpio.c and
it menages all the GPIO ports. The major number of this module is assigned
to 120 de�ned by macro

#define GPIO_MAJOR 120

with minor number 0 and 1 for ports A and B. The module implements the
following I/O function for the device:

static int gpio_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg);

static ssize_t gpio_write(struct file * file, const char * buf,
size_t count, loff_t *off);

static int gpio_open(struct inode *inode, struct file *filp);
static int gpio_release(struct inode *inode, struct file *filp);
static unsigned int gpio_poll(struct file *filp,

struct poll_table_struct *wait);

which are assigned to the �le operation structure:

Figura 2: Section Hardware setup kernel con�guration.

4

struct file_operations gpio_fops = {
.owner = THIS_MODULE,
.poll = gpio_poll,
.ioctl = gpio_ioctl,
.write = gpio_write,
.open = gpio_open,

.release = gpio_release, };

The principal calls are developed in a quite standard way. At the beginning
there is a speci�c structure to menage the device named struct gpio_private

containing many �elds among which:

next pointer to the following item: this structure is in reality a list

minor device minor number port pointer char to the register of port (A, B,
ecc)

dir pointer char to the register by which it is possible to set the "di-
rection" of the port, or, to be more precise, if it is input or output
shadow pointer char containing the value of port, that is the state
of bits

dir_shadow pointer char to the value contained by the register pointed by dir
�eld; remember that registers R_PORT_Px_DIR are write-only, so if we
want to keep track of their values, we must use an auxiliary variable

higalarm, lowalarm are alarms that can be associated to the speci�c port; they
are related only to the con�gured port as input and normally are
managed in interrupt

This structure is loaded by open function that make it available to the other
function. In order to do this the open obtains, from the �le descriptor, the
minor number through macro MINOR(inode->i_rdev). If minor number is valid
the execution proceed allocating in memory the variable priv, that is a pointer
to the structure gpio_private and it set immediately the minor number inside
of this structure. If port is A or B then the structure is compiled using some
static arrays de�ned with the same name of the components of struct layout
(port, dir, shadow, ecc but plurals).

Function open is called always when a device �le is opened, and, as you
know, every times that a port is opened, a new "device structure" is alloca-
ted, but this memory must be released just before the �le descriptor of the
device is released (in other words when a close function is called). To do this,
function gpio_release is used and every operation executed inside of this func-
tion must be executed "blocking" the interrupt events; in other words the ope-
rations executed are written between two macro: spin_lock_irq(&gpio_lock)

and spin_unlock_irq(&gpio_lock) (see chapter 5 of [4] for more informations).
Memory user by each item of the list will be free.

5

At the and remaining only functions write and ioctl. Those function per-
mit to access and communicate with the device. The �rst is implemented by
gpio_write and execute the control of minor number and verify if bu�er passed
from user-space is valid for its whole length (count, also this passed from user-
space) by macro acces_ok; the execution proceed blocking the interrupt event
alike gpio_release and setting the value of the port in order to speci�c masks.

In order to gpio_ioctl, the behavior is similar, but it depends on the required
function. In this case the access permit better interactions; indeed it is possible
not only read and write a speci�c register of a port, but also read a single bit,
set/reset alarms, etc.

This module has the only initialization function (gpio_init) that registers
the module as a character device (register_chrdev(GPIO_MAJOR, gpio_name,

&gpio_fops)). The code proceed con�guring LED (and so the port) by a macro
link LED_NETWORK_SET, LED_DISK_READ, etc according to the kernel con�guration.
Finaly the function tries to register two interrupt routine by request_irq as
following:

if (request_irq(TIMER0_IRQ_NBR, gpio_poll_timer_interrupt,
SA_SHIRQ|SA_INTERRUPT,"gpio poll", NULL)) {

printk(KERN_CRIT "err: timer0 irq for gpio\n");
}
if (request_irq(PA_IRQ_NBR, gpio_pa_interrupt,

SA_SHIRQ|SA_INTERRUPT,"gpio PA", NULL)){
printk(KERN_CRIT "err: PA irq for gpio\n");

}

First if sets a function (gpio_poll_timer_interrupt) that should execute a cyclic
control (due to the timer) of alarms eventually generated calling etrax_gpio_-

wake_up_check(). The second if sets a function that should execute the same
operation of the �rst one, but the trigger event is on the port A. "Should" be-
cause in reality this never happen! Those function aren't registered (or better,
they are not assigned to the speci�c interrupt) because of some condition. One
of these is the �ag SA_SHIRQ which indicates the possibility to sharing the in-
terrupt of this peripheral, but it isn't true, in particular for timer device; even
if theoretically we could think that it is possible to share speci�c operation
about temporization, probably it could generate unacceptable overhead also if
the function is very fast (or, at least, atomic).

Curiously the module don't have an "unload" function. Probably it is due to
the fact that the system doesn't schedule to load dynamically this module. But
if the module would be separated by the monolithic kernel, it would be better
to insert a function of this kind, at least to unregister the character device and
to release the interrupt functions (if they are being registered).

2.3 Access from user space

Access to the I/O port through user-space is done besically in two ways: the
�rst uses the typical device �le abstraction method in UNIX, that is the access

6

opening a speci�c device �le, while the second permits the access through speci�c
system calls.

2.3.1 IOCTL

The �rst method quoted before permits, as it said, to access through a device
�le contained in /dev directory. Normally on a device �le it is possible execute
the operations like open, read, write, etc. But in this case not all the typical
functions are being (reasonably) implemented; it is simple to think that the
append function is unnecessary to control a device like a digital port, and so on
for many other system call, for instance fseek. Up ahead this fact will be more
clear, when we will analyze the driver in details.

Then, abstract a digital port by a character device �le is possible, all the
more ports A and B are accessible by indexing 8 bit for per time. Nevertheless
the best method to take the control of the port is using the system call ioctl
which permit to execute more operations by which:

IO_READBITS read single bits of the port (in and out). This function is depre-
cated and it is suggested to substitute it with IO_READ_INBITS
and IO_READ_OUTBITS.

IO_SETBITS sets state of one or more bit, then drive the corresponding pin
of processor at high level.

IO_CLRBITS resets state of one or more bit, then drive the corresponding pin
of processor at low level.

IO_READDIR permette di leggere la "direzione" del pin, ossia se il pin è in
con�gurazione input o output. Anche questa è deprecata in favore
di IO_SETGET_INPUT/OUTPUT.

In the follow it is showed an example taken by Acmesystem site and readap-
ted. This code gets the red LED blinking. As we saw before, the red LED is
connected to the fourth pin of port A (PA3); so we have:

#include "stdio.h"
#include "stdlib.h"
#include "unistd.h"
#include "sys/ioctl.h"
#include "fcntl.h"
#include "asm/etraxgpio.h"
#define DEVICE "/dev/gpioa"
int main(void) {

int fd, i;
int iomask;
if ((fd = open(DEVICE, O_RDWR))<0) {

printf("Open error on %s\n",DEVICE);
exit(-1);

}
iomask=1< <3; //mask indicating the 4◦ bit, then PA3

7

printf("Blinking LED %i\n", iomask);
for (i=0;i<20;i++) {

printf("Led ON\n");
ioctl(fd,_IO(ETRAXGPIO_IOCTYPE,IO_SETBITS),iomask);
sleep(1);
printf("Led OFF\n");
ioctl(fd,_IO(ETRAXGPIO_IOCTYPE,IO_CLRBITS),iomask);
sleep(1);

}
close(fd);
return 0;

}

This program set on and o� the LED 20 times.

2.3.2 Syscall

The second method allowed to control the speci�ed port through direct special
system calls (syscall as you know). These calls are de�ned in �le linux/gpio_syscall.h
and with them we can have access to the kernel directly without using a device
�le; so we couldn't use a descriptor �le. In other word we don't have to open a
device �le to use the speci�c system calls releted to the device. When a routine
of a speci�c device is invoked (like open or ioctl) by a process in user-space, the
execution passes in kernel-space by a software interrupt request6 that normally
need of many cycles typically to save the process context. Normally this kind of
events get worst the performances of program, in particular if they are repeated
many times. The syscall implemented in gpio_syscalls.h avoid this problem
and so they are more e�cients.

An example alike the last one:

#include "stdio.h"
#include "stdlib.h"
#include "unistd.h"
#include "sys/ioctl.h"
#include "fcntl.h"
#include "time.h"
#include "string.h"
#include "linux/gpio_syscalls.h"

int main(void) {
int i;
gpiosetdir(PORTA, DIROUT, PA3); //set PA0 as output
for(i=0; i<10; i++)
{

gpiosetbits(PORTA, PA3); //PA3 is RED LED
printf("%d\n", (gpiogetbits(PORTA, PA3))?(1):(0));
sleep(1);
gpioclearbits(PORTA, PA3);
printf("%d\n", (gpiogetbits(PORTA, PA3))?(1):(0));

6 By interrupt 80 in the x86 systems with the instruction int 0x80

8

sleep(1);
}
return(0);

}

2.4 Access form kernel space

At kernel level the access to GPIO port is relatively simple and it is similar
to that happens in a typical �rmware writing for a memory mapped micro-
controller. Also in this case we must write proper values in a speci�c address of
memory (register).

Considering again port A, we can read from datasheet [1] the con�gura-
tion register for this device is located to the index 0xB0000030. Again from [1]
we get the name of register is R_PORT_PA_SET, that is the same we can �nd in
con�guration kernel. This is obviously a 32-bit register (word of this ETRAX
100LX processor), but bits used from the port PA are only the �rst 16: the
�rst 8 bits identify the state of pins, while the 8 most signi�cant (of the 16
less signi�cant of the whole word) indicate to the processor if the corresponding
bit is an input or an output. These two registers are named R_PORT_PA_DATA,
R_PORT_PA_DIR and their respective address are 0xB0000030 and 0xB0000031. The
register R_PORT_PA_DIR is moreover write-only.

Following examples verify what we have just said. If who read don't have
experience about kernel programing, it is suggested to read [4]. In order to
module compilation, see appendix A.

2.4.1 Retrieve Informations

The proposal module read the address and value of register about PA port:

/** INFOPA.c **/
#include <linux/module.h>
#include <asm/io.h> //provide access to GPIO port and other
MODULE_LICENSE("DUAL GPL/BSD");
MODULE_VERSION("0.1");

/** Module Loading Function **/
void infoPA_cleanup_module(void) {
//Nothing to do
}
/** Initializzation Function **/
int infoPA_init_module(void) {
//cast to int to avoid warning in compilation time

printk(KERN_ALERT "\nIndex port PA:\n"
" -R_PORT_PA_SET = %8X\n -R_PORT_PA_DATA = %8X\n"
" -R_PORT_PA_DIR = %8X\n", (int)R_PORT_PA_SET,
(int)R_PORT_PA_DATA, (int)R_PORT_PA_DIR);

printk(KERN_ALERT "\nValue port PA:\n"
" -R_PORT_PA_SET = %8X\n -R_PORT_PA_DATA = %8X\n"
" -R_PORT_PA_DIR = %8X\n", *R_PORT_PA_SET,

9

*R_PORT_PA_DATA, *R_PORT_PA_DIR);

return 0;
}
/***************************************
* INIT & EXIT
***************************************/

module_init(infoPA_init_module);
module_exit(infoPA_cleanup_module);

This module is simple and is made by the only two function of initialization and
cleanup; the �rs write in the ring bu�er of kernel the indexes and values about
port A. When module is unloaded, nothing will be executed because there is no
allocated memory, de�nitions in /proc, syscall substitutions, etc. To verify the
code we can connect to the board, loading the module and watching the last
row wrote in /var/log/message �le:

telnet 192.168.0.90 #typical way to connect to the FOX
insmod /mnt/flash/infoPA.ko #loading module stored in in /mnt/flash
tail /var/log/message #reading kernel report
rmmod infoPA #eventually remove module from kernel

Note: to specify the type of message and to indicate to the kernel that the
message must be write in /var/log/message, we add before the string the
macro KERN_ALERT. There are many other kind of macros related to
the type of message; one of this other macro is KERN_INFO and also
this macro put the message in the same �le (/var/log/message). This is
di�erent from the behavior of the standard kernel in which (typically) the
messages marked by KERN_INFO are wrote in /var/log/message, while
KERN_ALERT write the message in /var/log/syslog7.

2.4.2 Change status of LEDs

The next module is a little more complex. Now we wont to drive the kernel to
change the state of red and yellow LED. In order to do this, one possible solution
is using /proc �lesystem. We will create a �le in the subdirectory calzo/ named
pa. Writing this virtual �le we change the state of output pins. The various
functions will be explained in the follow.

�Completeness is enemy of clearness�: so the following modules could be
uncompleted or could have some bug, but they should be more simple to
understand.

Declarations & Macro

/** CALZOLED.C **/
#include <linux/module.h>

7 This is true in Slackware; in other distro the name of some �les can change

10

#include <linux/proc_fs.h> //proc interface
#include <asm/uaccess.h> //copy_from_user, copy_to_user, ecc
#include <asm/semaphore.h> //semaphore structure
#include <asm/io.h> //access to GPIO port and other

// peripherals on ETRAX LX100
MODULE_LICENSE("DUAL GPL/BSD");
MODULE_VERSION("0.1");

/** Module Paramethers **/
static unsigned int setdataPA = 0x00;
module_param(setdataPA, uint, S_IRUGO|S_IWUSR); //[4] cap 2, pag36
MODULE_PARM_DESC(setdataPA, "Set PA port");
struct semaphore sem; //mutual exclusion semaphore - to avoid

//"Concurrency and Race conditions" [4] ch5
//Structure for /proc filesystem
struct proc_dir_entry *proc_cldir = NULL; //main directory
struct proc_dir_entry *proc_clpa = NULL; //file for port PA
/** Definition for /proc filesystem **/
#define PROC_CL_DIR "calzo" //directory in /proc
#define PROC_CL_PA "pa" //file in /proc/calzo
...
/***************************************
* INIT & EXIT
***************************************/

module_init(cl_init_module);
module_exit(cl_cleanup_module);

Two macro module_init and module_exit are implemented at the end of �le.

Module initialization

int cl_init_module(void) {
//Semaphore initialization
init_MUTEX(&sem);
//Creation of virtual directory /calzo in /proc
proc_cldir = proc_mkdir(PROC_CL_DIR, NULL);

if(!proc_cldir)
{

printk(KERN_ALERT "Unable to create proc_cldir\n");
return -ENOMEM;

} else
{
proc_clpa = create_proc_read_entry(

PROC_CL_PA, //file name
0, //protection mask: default=0
proc_cldir, //parent dir
NULL, //file read function
NULL);

if(!proc_clpa)
{

printk(KERN_ALERT "Unable to create proc_clpa\n");
cl_cleanup_module();
return -ENOMEM;

11

} else
proc_clpa->write_proc = cl_write_pa;

}
printk(KERN_ALERT "calzoled loaded.\n"

" PA data: %x\n PA direction: %x\n",
*R_PORT_PA_DATA, *R_PORT_PA_DIR);

return 0;
}

This function initializes semaphores used inside the write function. Successively
calzo/ directory is created in /proc with proc_mkdir routine. If there aren't any
problems it proceeds to the creation of virtual �le pa (by create_proc_read_entry).
Before exiting, values of PA port are wrote in kernel ring bu�er.

Module Clean-up

void cl_cleanup_module(void) {
// ERASING proc entity
if(proc_clpa)
remove_proc_entry(PROC_CL_PA, proc_cldir); //file and parent-dir

if(proc_cldir)
remove_proc_entry(PROC_CL_DIR, NULL);

printk(KERN_ALERT "calzoled unloaded\n");
}

Removing virtual �le in /proc calling remove_proc_entry.

Write function for virtual �le pa

int cl_write_pa(struct file *file, const char __user *buffer,
unsigned long count, void *data) {

unsigned char buf=0;
int new_value=0; //if new value is negative it's wrong

if(!count) //if counter is 0...
return count; //...return 0 and don't do anything

if(!buffer) //if buffer doesn't exist...
return 0; //...0, but it would be better return an error

if(down_interruptible(&sem)) //avoid concurrency conditions
return -ERESTARTSYS;

//If we are here, we proceed with a copy of buffer
// passed from user-space for a maximum of length of
// destination buffer.

copy_from_user((void*)&buf, buffer, 1);

//Convert HEXADECIMAL char in a real number
if (buf>='0' && buf<='9')
new_value += ((int)buf-'0');

else if (buf>='A' && buf<='F')

12

new_value += ((int)buf-'A'+10);
else if (buf>='a' && buf<='f')
new_value += ((int)buf-'a'+10);

else
new_value = -1;

//If there aren't errors, set data in port A
if(new_value<0)
printk(KERN_ALERT "Warning: %c is not HEX format.\n", buf);

else
*R_PORT_PA_DATA = new_value;

up(&sem); //release semaphore
return count; //returning count, the whole process is done in a while

}

Function write for �le system proc has a parameter headline a little di�erent by
the traditional write call, but the concept is the same. After the typical initial
checks, the kernel checks the �rst character of a bu�er passed from user-space
and transforms it a number if this character represents a hexadecimal number.
Analyzing only one letter, the possible values that are writing in the register of
port A will be between 0 and 15. In other words we can change only the �rst
four bits. It is enough because FOX LED are connected to the �rst four pins.

Using the module

Once we have compiled the module and loaded on FOX (for example in /mnt/flash)
it is necessary load it with the well-known command insmod. Therefore we �nd
in �le system /proc the directory calzo/ and �le pa. Now with the command:

echo F > /proc/calzo/pa

the �rst four pin of port PA are set to the logical state high if they are output.
LEDs which are controlled in negate logic shut o� them. Vice versa writing 0

instead of F, LEDs turn on.

2.5 Interrupt

In this section we try to regiser and active an interrupt function aganinst an
event on port A. In the section 2.2 was introducted the syntax by which is
possible to join a function to the speci�c event. The code is:

request_irq(PA_IRQ_NBR, gpio_pa_interrupt,
SA_SHIRQ|SA_INTERRUPT, "gpio PA", NULL)

but, as we have already mentioned, this function will never be register if there is
SA_SHIRQ �ag; if it is removed, the function gpio_pa_interrupt will be registered

13

with success and we can see that typing cat /proc/interrupt (�gure 3). At this
point, for debugging, we can write for example printk(KERN_ALERT "interrupt

registered!\n") at the beginning of gpio_pa_interrupt to see if the interrupt is
invoked or not. If now we press the button on FOX Board we maybe think an
interrupt request is generated and this event write "interrupt registered!" string
in /var/log/message, but it isn't. We must do another thing that is not done by
the kernel, to be more precise it needs to operate above R_IRQ_MASK1_SET register
which indicates which pins of port A can generate interrupts. To do this we can
modify the initialization function of infoPA module described before (or, if you
prefer, you'll write another module) adding the code line *R_IRQ_MASK1_SET=0xF
by which we set the interrupt event will be activated only from the �rsts four
pins of port A if they are con�gured as input; so with this con�guration the
only pin which could generate an interrupt is linked to the button.

But now there is a problem: suppose to connect and load the module which
allows to enable the interrupt. At this point, without doing anything else, we
notice a strange behavior of board that suddenly must satisfy a huge queue of
interrupt requests! Pushing the button we see moreover the processor menage
the queue and it is able to free some of requests, but, after some push, the kernel
message comes over:

axis kernel: Disabling IRQ #11

so the interrupt become disabled. Now (or better before) we can reboot the
FOX board.

This behavior is all in all correct because from [2] we read interrupts on
ETRAX 100LX processor related to the port PA rise "at level" high, so in-
terrupts rise if the (voltage) level on a speci�c pin remain high. The button

Figure 3: cat /proc/interrupt output

CPU0
2: 25498 CRISv10 timer
3: 0 CRISv10 fast timer int
6: 0 CRISv10 ETRAX 100LX built-in ethernet controller
8: 0 CRISv10 serial
11: 0 CRISv10 gpio PA
16: 40 CRISv10 ETRAX 100LX built-in ethernet controller
17: 112 CRISv10 ETRAX 100LX built-in ethernet controller
22: 156 CRISv10 serial 0 dma tr
23: 0 CRISv10 serial 0 dma rec
24: 0 CRISv10 ETRAX 100LX built-in USB (Tx)
25: 0 CRISv10 ETRAX 100LX built-in USB (Rx)
31: 2 CRISv10 ETRAX 100LX built-in USB (HC)

The maximum number of interrupts allowed by ETRAX 100LX processor
is 32; the limit is set in the software by "#define NR_IRQS 32" macro in
$AXIS_KERNEL_DIR/include/asm-cris/arch-v10/irq.h.

14

is connected in negate logic directly to the processor so, obviously, in the rest
state (default state) detect the high level on this pin and generate an endless
interrupt requests.

For these reasons, we will write a new module named irqPA.c to test inter-
rupt.

2.5.1 irqPA

The objective of this module is detect an interrupt on one pin of port PA
avoiding problems mentioned before. There are many way to do this, but we
have decided to set as input another pin not connected to other device and
we command it by an other pin con�gured as output in user-space by setbits
command. If we examine the structure of the FOX about GPIO (see [5]), we
see probably the better choice is to convert PA0 as input, while PA3 (red led)
will be the controller (the last one choice is arbitrary). To connect these pins
we can chose a resistor of about 1KΩ as you can see in �gure 4.

Figure 4: Pin PA0 (J7.38) and PA3 (J7.35) connected on FOX board with 1KΩ
resistor

PORT A: default connection
A0 J7.38 (I/O) O General purpose I/O
A1 J7.37 (I/O) I On board switch SW1
A2 J7.36 (I/O) O On board led DL2
A3 J7.35 (I/O) O On board led DL1
A4 J7.34 (I/O) O DTR line on /dev/ttyS2
A5 J7.33 (I/O) I RI line on /dev/ttyS2
A6 J7.32 (I/O) I DSR line on /dev/ttyS2

A7 J7.31 (I/O) I CD line on /dev/ttyS2

From the point of view of software con�guration, we can recon�gure the
kernel in order to set the �rst two pins of port A as output. To do that we
run the kernel con�guration command and we modify the item R_PORT_PA_DIR

(�gure 2) at value 0x1C. Obviously the kernel must be recompiled and writed
in �ash. To verify if the modi�cation is correct, typing the command readbits
which returns as �rst characters (about port A) "111XXX10".

The module will be presented must execute this operations:

loading registering with success the interrupt function when will be loaded

interrupt while interrupt is running the routine code, it must drive down the
logical state of pin PA3; this is mandatory to avoid, as already men-
tioned, that the system will be overcrowded by interrupt requests.
Remember this is true only for this kind of example!

15

unloading while module run the clean-up routine it is necessary to deallocate
the interrupt function

#include <linux/interrupt.h>
#include <linux/module.h>
#include <asm/io.h> //provide access to GPIO port and other

MODULE_LICENSE("DUAL GPL/BSD");
MODULE_VERSION("0.1");

#define IRQ_PA_MASK 0x01 //interrupt for button

static DEFINE_SPINLOCK(gpio_lock_irq);

/***** INTERRUPT FUNCTION ********
* This function disalbe temporary the possibility to
* receive other interrupt until it isn't completed
* ********************************/
static irqreturn_t

irqPA_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

*R_IRQ_MASK1_CLR = 0;
*R_PORT_PA_DATA = 0; //necessary to avoid an avalance of interrupt
printk(KERN_ALERT "calzo - irq served\n");
return IRQ_HANDLED;

}
/**
* INITIALIZATION & CLEANUP functions
**/
/// Module initialization function
int irqPA_init_module(void) {

if (request_irq(PA_IRQ_NBR, irqPA_interrupt,
SA_INTERRUPT,"calzo gpio PA interrupt", NULL))

{
printk(KERN_CRIT "err: PA irq for gpio (calzo)\n");
return -ERESTART;

}
//set which pin can generate the interrupt
*R_IRQ_MASK1_SET = IRQ_PA_MASK;
return 0;

}

///Module unload function
void irqPA_cleanup_module(void) {

spin_lock_irq(&gpio_lock_irq);
*R_IRQ_MASK1_SET = 0;
*R_IRQ_MASK1_CLR = 0;
free_irq(PA_IRQ_NBR, NULL);
spin_unlock_irq(&gpio_lock_irq);

}

/***************************************
* INIT & EXIT
***************************************/
module_init(irqPA_init_module);

16

module_exit(irqPA_cleanup_module);

Note: in function irqPA_cleanup_module is used a function spin_lock_irq(&gpio-

_lock_irq) which inhibit the interrupt temporary on the current proces-
sor. Maybe this isn't too much correct or however it can be unnecessary
because we act with R_IRQ_MASK1_SET resetting itself, so disabling the in-
terrupt of PA port.

Remember if you want to use this module is better to comment the registration
of interrupt function in �le $AXIS_KERNEL_DIR/arch/cris/arch-v10/drivers/gpio.c.
In this manner you are sure that there aren't other registered function.

How to use this module

Once you are connected to the FOX and loaded the module with insmod com-
mand, if is not showed any error, you can control the module was correctly
loaded typing cat /proc/interrupt that must return a message similar or equal
that is showed in �gure 3.

If there are no problems it is necessary to set high the PA3 pin typing
"setbits -p a -b 3 -s 1". Doing this, the PA0 pin rise to the high level ant
the interrupt is detected and served. Now you could think to see red LED turn
o� itself, but it isn't because at most a few tens of microsecond the interrupt
routine will be served; this code proceeds resetting *R_PORT_PA_DATA, operation
mandatory. Obviously it could be better to reset only the pin that generates
the interrupt (PA0), but for precision and simplicity it is preferred to proceed
thus.

17

Appendix

A How to con�gure&compile kernel module

What is described in the following sections is relative to the kernel 2.6.15 of
FOX board, but it is applicable to any other kernel.

A.1 Con�guring kernel modules

It can be necessary or however useful to insert in the con�guration interface of
the kernel, the possibility to choose the module just wrote and/or can con�gure
them. In order to do this it needs a �le named Kconfig in the directory containing
new �les that it would compile. It is evident if �les are in a directory already
present in the kernel tree, it will be su�cient to edit the Kconfig �le that it is
in. In this example it will consider always the $AXIS_KERNEL_DIR/drivers/calzo

directory.
First we'll examine Kconfig within the directory arch/cris/ of kernel tree

which de�ne sub-menus of the root of kernel con�guration, that is the �rst screen
you can view typing make menuconfig. Append to the �le:

menu "Calzo Device"
source "drivers/calzo/Kconfig"

endmenu

add the voice Calzo Device to the con�guration interface which is a sub-menu.
Now it is necessary to write the �les drivers/calzo/Kconfig (also void) to avoid
the fault of creation of the con�guration interface. Adding to the �le the follo-
wing lines:

config CALZO_MODULES_ENABLE
bool "Active Calzo Modules"
help
Some modules writing by Calzo for Linux DAY '07
Linux Day 2007 come esempio

config CALZO_INFOPA
tristate "infoPA"
depends on CALZO_MODULES_ENABLE
default m
help
infoPA return indexes and value of port A on ETRAX LX100
Compiled as a module, the name is infoPA.ko

config CALZO_LED_PA
tristate "Calzo LED"
depends on CALZO_MODULES_ENABLE
default m
help
Set the status LED of port A writing an hexadecimal char
in /proc/calzo/cl. For instance echo F > /proc/calzo/cl

18

shut off all LED.

Compiled as a module, the name is calzoled.ko

Running the kernel con�guration, activing these new options and saving them,
will be created a new .config �le containing for example:

CONFIG_CALZO_MODULES_ENABLE=y
CONFIG_CALZO_INFOPA=m
CONFIG_CALZO_LED_PA=m

As you know the con�guration system will add these informations in a .h �le as
a C de�nition and also before these macros will be used to instruct the compiler
about new �les it has to compile.

A.2 Compiling kernel module

To compile a kernel module is better make a new directory in the root ker-
nel source. In this case, guessing the sources of the whole system are in
/usr/local/fox, move in the subdirectory os/linux-2.6 that is the kernel sour-
ce directory. Once here we can create for example a directory drivers/calzo/

typing mkdir drivers/calzo/; so we can edit the Makefile within derivers/ di-
rectory adding (for example to the bottom) "obj-y += calzo/".

So the kernel compilation system will know it'll have to �nd a Makefile inside
the directory derivers/calzo/ and so it will be necessary to create this �le even
if empty, otherwise the compilation process fails. In this make�le it needs to
indicate which (new) modules has to be compiled. Wander to have two modules
named calzoled.c and infoPA.c and adding:

obj-y += calzoled.o
obj-m += infoPA.o

These instructions allow to compile calzoled.c and linked it directly in the
kernel, while infoPA.c will be compiled as a module and so in the its own
directory will appear infoPA.ko; obviously extension .ko is due to the version
2.6 of the kernel.

In the section A.1 it saw how to con�gure a module. To make the new
con�guration usefull by the compiler, it must write:

obj-$(CONFIG_CALZO_LED_PA) += calzoled.o
obj-$(CONFIG_CALZO_INFOPA) += infoPA.o

where these macros have value y o m if you wont to add the module directly in
the kernel or get it separated an load it later.

A non monolithic compilation of module is done by typing make in the direc-
tory of the kernel. Take in mind that to do a cross-compilation of any application
of FOX, it is mandatory execute init_env in the root directory of FOX sources
as mentioned in [5]:

19

cd /directory/of/fox/environment/devboard-R2_01
. init_env

The last command creates new environment variables to do the correct compi-
lation with cris compiler. The variable is alike to this:

AXIS_TOP_DIR = /directory/of/fox/devboard-R2_01
AXIS_KERNEL_DIR = /directory/of/fox/devboard-R2_01/os/linux-2.6

To compile is su�cient run make or make modules if the modi�cations are only of
modules. if modules are compiled and added int the kernel code, it must re�ash
the FOX, while if modules are separated from the kernel code (so exist one or
more .ko �les), we can copy them with the scp command; normally:

scp module_name.ko root@192.168.0.90:/mnt/flash

Keep in mind that /mnt/flash is a directory always writable in �ash.

Reference

[1] Datasheet ETRAX 100LX

[2] ETRAX 100LX Designer Manual - etrax_100lx_des_ref-060209.pdf

[3] ETRAX 100LX Programmer Manual - etrax_100lx_prog_man-050519.pdf

[4] Linux Device Driver 3rd edition

[5] http://www.acmesystems.it/?id=711 how to cross-compile a pro-
gram

Info&Credits

Many thanks to MCM Energy Lab and the section of Azionamenti of the
department of Electrical Engeneering of Politecnico in Milan (Italy) by giving
support and hardware to do the test.

This document was written for the 7◦ days of Linux and Free Software and
presented by LUGMan (www.lugman.org) in Sangiorgio (Mantova); it is relea-
sed under GPL v2 license. Everyone would have the sources of this document
can ask it to info@lugman.org or browsing the web site of the association. This
document is writen with LYX 1.4.3 under GNU/Linux Slackware 10.2. All the
software is writen and tested with GNU/Linux Slackware 10.2.

Writer: Calzo (calzog @ gmail . com)

20

release 1 October 2007 for Linux DAY 2007 in Mantova (Italy) - written by
Calzoni Pietro aka Calzo, member of LUGMan - Linux Users Group Man-
tova

release 2 March 2008 - translation by Calzo. Thank you very much for the
interest showed me about this document by many people

release 3 August 2008 - some little correction. Special thanks to Geert Van-
compernolle for feedbacks

21

